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Abstract

In this paper we discuss the strategies and methodologies by which a
proper test of the Null hypothesis of no Torah effect can be done against a
complex of alternative hypotheses: that almost all the events in one or two
of the their key word sets have ELSs that are in a more compact relation than
expected by chance. We apply this test to the list of American presidents.

The American president experiments is driven by a ruled based spelling
transliteration scheme of English names into multiple Hebrew alternative
spellings. This methodology is more immune to claims of non a priori
data selection because it is rule based and because the rules generate many
spelling alternatives all of which are used in the experiment. The rule based
scheme itself becomes incorporated into the alternative hypothesis.

With our new methodology, the Null Hypothesis is tested against the al-
ternative that nearly all events have one or two key word sets that have ELSs
in a more compact meeting than expected by chance. The Null Hypothesis
had to be rejected. The p-level was below 1.5/100,000.



1 Introduction
The application of pattern recognition methodologies are not new to religious ar-
eas. For example Ikeuchi’s use of a 3D laser scanner to obtain range data on
religious objects such as the Great Buddha of Kamakura is one such project[5].
Ikeuchi was able to process the range data and create a complex 3D mesh surface
model of the Buddha and then give it the gold leaf appearance as it was when it
was originally built.

In this paper we discuss another kind of application of pattern recognition
and statistical methods to a religious area. We discuss the Torah codes, a topic
that has had considerable popular interest, with at least three documentary video
productions that have been aired over cable multiple times. The Torah codes have
been involved in a great academic controversy ever since the publication of the
first formal study by Witztum, Rips, and Rosenberg[7] (WRR) and the subsequent
claim that any apparently successful experiment must be due to non a priori data
selection[6].

The Torah codes center on the Hebrew Torah text, the five books of Moses. It
has been claimed that key words which are historically/logically related have their
low skip rank equidistant letter sequences in a more compact geometric arrang-
ment in the Torah text than expected by chance. This phenomena, if it is really
there, is surprising. Here, we do not review the prior experiments that have been
done. Nor do we discuss the controversy itself. That discussion can be found
in Haralick, Rips, Glazerson[4]. Rather, we lay out in a tutorial way, the basic
concepts and kinds of pattern features that are being used in the Torah code inves-
tigation and in section 16 discuss experiments that have been done with a new and
more robust feature set.

In order to have an experiment that is reproducible, there has to be an exper-
imental protocol which describes in sufficiently precise detail all the steps and
calculations so that another researcher can independently perform the experiment
and expect to get results that are insignificantly different from that of the original
experiment. It is this kind of replication that the scientific methodology demands.
In this paper we provide exact descriptions of experimental protocols that was
used to test the Torah Code hypothesis with respect to the American Presidents.

The paper discusses the basic concepts of equidistant letter sequence, skip
specification, resonance specification, compactness features, and experimental
protocol issues in testing the Torah Code Hypothesis. Principal concepts of the
experimental protocol involve the control population, here called the monkey text
population, the skip specification, the resonance specification, and the test statistic
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which is used to do the actual hypothesis testing of the Null hypothesis against a
complex of alternative hypotheses.

Our experiments each involve multiple events and each event has multiple key
word sets. The formula for the test statistic is motivated by a probability deriva-
tion given in appendices A and the associated statement of the complex alternative
hypothesis: that nearly all the events have one or two key word sets whose words
have ELSs in a more compact arrangement than expected by chance. The experi-
mental protocol uses the test statistic as a score in Monte Carlo experiment. The
p-value of the experiment is the normalized rank of the Torah text test statistic in
the sampled monkey text test statistics.

We begin our discussion with the basic definitions and concepts[2].

2 Definitions
A word w of length K is a sequence of K characters w =< w1, . . . , wK >. A
text T is the character string of the text with spaces, punctuation marks and all
symbols other than the letters of the alphabet removed. A text is just a very long
word. Let T =< t1, . . . , tZ > be a given text. The letter frequency of alphabet
letter α is just the number of the times the letter α occurs in the text. It is given by

f(α) = #{z | tz = α}

The probability of occurrence of letter α is given by

p(α) =
f(α)

Z

An equidistant letter sequence, called ELS for short, is a sequence of equally
spaced letters in the text not counting spaces and punctuation marks. The se-
quence of the letter positions form an arithmetic progression. Several properties
associated with an ELS e are:

• B(e): the beginning position of ELS e,

• E(e): the ending position of ELS e,

• L(e): the number of characters in ELS e,

• S(e): the skip of ELS e, and
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• W (e): the character string < W (e)1, . . . ,W (e)L(e) > of ELS e

These properties have two constraints: B(e) < L(e) and the relation binding the
end position to the beginning position. E(e) = B(e) + (L(e)− 1)|S(e)|.

The positions determined by the ELS e are given by

B(e), B(e) + |S(e)|, . . . , B(e) + (L(e)− 1)|S(e)|

Character W (e)i of ELS E is associated with position B(e) + (i − 1)|S(e)|, i =
1, . . . , L(e). The span of an ELS e is given by

E(e)−B(e) + 1 = 1 + (L(e)− 1)|S(e)|

The skip S(e) can be positive or negative depending on whether the ELS po-
sitions match in a forwards or backwards order. We call the first kind of ELS a
positive skip ELS and the second kind of ELS a negative skip ELS. ELS e is said
to be a positive skip ELS of a word w whose respective characters are w1, . . . , wLw

if and only if Lw = L(e) and wi = W (e)i, i = 1, . . . , Lw. ELS e is said to be a
negative skip ELS of a word w whose respective characters are < w1, . . . , wLw >
if and only if Lw = L(e) and wi = W (e)L(e)+1−i, i = 1, . . . , Lw.

An ELS e is said to be an ELS of a word w in a text T if and only if it is an
ELS of word w and

TB(e)+i|S(e)| =


wi+1, i = 0, . . . , L(e)− 1

when S(e) > 0
wLw−i, i = 0, . . . , L(e)− 1

when S(e) < 0

The set of all ELSs E associated with a word w =< w1, . . . , wK > and text T
is given by

E(w, T ) = {e | e is an ELS of word w in textT}

If we want to name the set of ELSs for a key word w in a text T with respect
to a general skip specification σ, we will write E(w, T, σ).

2.1 Number of Placements
The number of possible placements for an ELS e of skip S(e) in a text of length
Z is Z − (L(e)− 1)|S(e)|. So the number N of possible placements for ELSs of
absolute skip from smallest skip Smin to largest skip Smax is
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N =
(Smax − Smin + 1)

2
∗

(2Z − (L(e)− 1) ∗ (Smax + Smin))

If matching is allowed both in the forward direction and reverse direction, then
the number of possible placements is exactly double the expression above, provid-
ing the key word is not symmetric (spelled the same way forward and backwards).

3 Number of ELSs
Given a text T of Z characters, there is a corresponding text population of Z! texts
corresponding to all the Z! letter permutations of the text T . In the letter permuted
text population, the probability p that any given placement of the letters of the key
word w =< α1, . . . , αK >, will match the letters in the placement position is
given by

p =
K∏

k=1

p(αk)

The probability for observing a given number of ELSs depends on the control
text population and the minimum and maximum skip ELS that is searched for.

In the case of a letter permuted text population, having placement match prob-
ability p for a given key word, the probability that K ELSs will be found for a key
word in a search of N placements is given by the binomial probability

Prob(K | p,N) =
N !

K!(N −K)!
pK(1− p)N−K

3.1 Expected Number of ELSs
Given a key word w, a minimum absolute skip Smin and a maximum absolute
skip Smax, we associate with each text T ′ in the letter permuted population the set
E(w, T ′, Smin, Smax). This set is the set of all ELSs of word w in the text T ′ that
have absolute skips in the interval [Smin, Smax]. This set has a size: the number of
ELSs it contains. The arithmetic average of the sizes of the ELS sets taken over
all the texts of the population is defined as the expected number of ELSs.
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In a population of letter permuted texts, each of length Z, the expected number
of ELSs of a key word
w =< α1, . . . , αK > is given by pN where

p =
K∏

k=1

p(αk)

N =
(Smax − Smin + 1)

2
∗ (2Z − (L− 1) ∗ (Smax + Smin))

since

N∑
k=0

kProb(k | p,N) = pN

3.2 Poisson Probability Approximation
In the case when p is small and N is large, the binomial probability can be ap-
proximated by the Poisson probabiilty

Prob(K | p,N) =
e−pN(pN)K

K!

4 Skip Specification
The most convincing Torah codes are often found using the expected number of
ELS search criterion. The smallest skip Smin is typically set to 1 or 2.

4.1 Expected Number
The expected number criterion sets the largest skip to be searched for to be the
smallest skip Smax making the expected number of ELSs in a randomly sam-
pled text from a letter permuted population be just larger than the given expected
numberM when the smallest absolute skip is 2. This is the protocol followed by
WRR. WRR sets the expected number to be 10 for the Genesis text of 78,064
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letters.1 We set the expected number to be 10 for the five books of the Genesis
through Deuteronomy.

We let σ denote the skip specification and E(w, T, σ) the set of all ELSs of
word w in text T satisfying the skip specification σ.

5 ELS Row and Column Skip on the Cylinder
When the text, with no spaces and punctuation characters, is spiraled around a
cylinder of γ columns, an ELS of absolute skip s will induce on the cylinder a row
skip sr and column skip sc given by

sr =

{
bs/γc if s mod γ ≤ γ − s mod γ
ds/γe otherwise

sc =

{
s mod γ if s mod γ ≤ γ − s mod γ
−(γ − s mod γ) otherwise

where d e designates the ceiling function.
We say that the column skip of an ELS on a cylinder is positive if s mod γ ≤

γ − s mod γ. This corresponds to the condition when the closest way to reach
successive letters of the ELS is by proceeding clockwise around the cylinder. We
say that the column skip of an ELS is negative when s mod γ > γ − s mod γ.
This corresponds to the condition when the closest way to reach successive letters
of the ELS is by proceeding counterclockwise around the cylinder.

6 Resonance Specification
The Torah code phenomena involves ELSs and cylinder sizes where the induced
row skip sr and column skip sc are both sufficiently small. A skip of size s and a
cylinder of size γ are said to resonate when the induced sr and sc are sufficiently
small.

The American President experiment uses the max row column skip criterion.
Let s = srγ + sc. Then skip s resonates with cylinder size γ when

1Even though by convention of WRR, the expected number is computed for a minimum skip
of 2, the skip specification is free to choose Smin = 1 or Smin = 2. If Smin = 1, the maximum
skip is computed by expected number with Smin = 2.
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sr ≤ srmax and sc ≤ scmax

On the basis of the resonance specification φ, we may define the resonance
relation Res.

Res(φ) = {(γ, s) | skip s is φ resonant with cylinder size γ}

Depending on the arguments of Res, we overload it in accordance with the fol-
lowing definitions.

Res(γ, φ) = {s | (γ, s) ∈ Res(φ)}
Res(s, φ) = {γ | (γ, s) ∈ Res(φ)}

7 Distance on the Cylinder
Many varieties of compactness definitions involve the concept of the distance be-
tween two positions on the cylinder. From one point on a cylinder to another, there
are two distinct paths: proceeding clockwise around the cylinder and proceeding
counterclockwise around the cylinder. The distance between two positions is de-
fined as the shorter of these two.

Let p1 and p2 be two text positions on a cylinder of size γ columns. Let r
denote the row distance between the two positions and let c denote the column
distance between the two positions. Then

r =

{
b|p1 − p2|/γc if |p1 − p2|modγ < γ − |p1 − p2|modγ
d|p1 − p2|/γe otherwise

c = min{|p1 − p2|modγ, γ − |p1 − p2|modγ}

The Euclidean distance ∆ between positions p1 and p2 on a cylinder of size γ is
then defined by

∆(p1, p2; γ) =
√
r2 + c2

8 Pairwise Distance Based ELS Compactness
An ELS on a cylinder of size γ can be regarded as a set of points. From this per-
spective view, the simplest compactness between two ELSs amounts to defining a
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distance like function between two sets of points. There are two commonly used
definitions between the points of two sets: their minimum distance d1 and their
maximum distance d2. Let e1 and e2 be two ELSs with respective beginning posi-
tions B(e1) and B(e2), skips S(e1) and S(e2), and lengths L(e1) and L(e2). Then
we define three distances between the ELSs on a cylinder of γ columns by the min
distance d1, the max distance d2, and the sum of the min and max distance by d12.

d1(e1, e2; γ) = min
i=1,...,L(e1)
j=1,...,L(e2)

∆(B(e1) + (i− 1)|S(e1)|, B(e2) + (j − 1)|S(e2)|; γ)

d2(e1, e2; γ) = max
i=1,...,L(e1)
j=1,...,L(e2)

∆(B(e1) + (i− 1)|S(e1)|, B(e2) + (j − 1)|S(e2)|; γ)

d12(e1, e2; γ) =
√
d2

1(e1, e2; γ) + d2
2(e1, e2; γ)

WRR used a squared min distance modified by the squared skips as it appears
on the cylinder. An ELS skip of s appears on the cylinder of size γ as a skip
with distance δ(0, s; γ). Based on this idea, we can define three WRR-like ELS
distances.

ω1(e1, e2, γ) = d2
1(e1, e2; γ) + ∆2(0, S(e1); γ) + ∆2(0, S(e2); γ)

ω2(e1, e2, γ) = d2
2(e1, e2; γ) + ∆2(0, S(e1); γ) + ∆2(0, S(e2); γ)

ω12(e1, e2, γ) = d2
12(e1, e2; γ) + ∆2(0, S(e1); γ) + ∆2(0, S(e2); γ)

In the above definitions, the three terms are weighted equally. But if the natural
weights are different because in some sense the scale of the skip distance is not
the same as the scale of the closest distance, it would be better to take a product
between d and ∆. To keep the product from being zero in the case of the min
distance, we bound the min distance below by a small positive constant ε.

ρ1(e1, e2, γ) = (max{d2
1(e1, e2; γ), ε)})× (∆2(0, S(e1); γ) + ∆2(0, S(e2); γ))

ρ2(e1, e2, γ) = d2
2(e1, e2; γ)× (∆2(0, S(e1); γ) + ∆2(0, S(e2); γ))

ρ12(e1, e2, γ) = d2
12(e1, e2; γ)× (∆2(0, S(e1); γ) + ∆2(0, S(e2); γ))

8.1 ELS Set Distance Based Compactness Measures
The ELS pairwise distance based measures can be easily generalized to ELS set
based measures. Every pair of distinct ELSs in a given set has a compactness.
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One of the pairs has a largest compactness. If we are given a set of ELSs under the
hypothesis that all are compactly related, this largest compactness is a reasonable
measure of compactness for the set.

Let E be a set of ELSs. Using capital letters for the set based distance, we
can define the corresponding set based compactness measures for a given cylinder
size γ.

D1(E; γ) = max
e∈E
f∈E

d1(e, f ; γ)

D2(E; γ) = max
e∈E
f∈E

d2(e, f ; γ)

D12(E; γ) = max
e∈E
f∈E

d12(e, f ; γ)

Ω1(E; γ) = max
e∈E
f∈E

ω1(e, f ; γ)

Ω2(E; γ) = max
e∈E
f∈E

ω2(e, f ; γ)

Ω12(E; γ) = max
e∈E
f∈E

ω12(e, f ; γ)

R1(E; γ) = max
e∈E
f∈E

ρ1(e, f ; γ)

R2(E; γ) = max
e∈E
f∈E

ρ2(e, f ; γ)

R12(E; γ) = max
e∈E
f∈E

ρ12(e, f ; γ)

9 Combination Methods Over Resonant Cylinder Sizes
Let ζ be an ELS set, δ be one of the ELS set compactness measures, φ be a
resonance specification and γ be a cylinder size. We define the best compactness
ψmin over resonant cylinder sizes by the smallest compactness taken over all the
resonant cylinder sizes for the ELS set

ψmin(ζ; δ, φ) = min{δ(ζ, γ) : γ ∈
⋂
e∈ζ

Res(S(e), φ)}
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10 Collections of ELS Sets Defined From The Key
Word Set

Let W = {w1, . . . , wK} be a set of K key words describing an event. Let
skip specification σ be given. Associated with each key word w of W is a set
E(w, T, σ) of its ELSs in text T in accordance with skip specification σ. Let
Z(W ;T, σ) be the collection of all ELS sets, where each set in the collection
contains exactly one ELS from each of the ELS sets E(w, T, σ), w ∈ W ,

Z(W ;T, σ) = {{e1, . . . , eK} | ek ∈ E(wk, T, σ)}

To evaluate whether the key words ofW are encoded as compactly arranged ELSs
in a text T , the statistic we use must be a function defined onZ(W ;T, σ) involving
a compactness measure and a combination method defined over resonant cylinder
sizes.

11 Key Word Set Compactness
Let δ be one of the ELS set based compactness measures, ψ be one of the combina-
tion methods defined over resonant cylinder sizes, φ be a resonance specification,
and σ be a skip specification. We define Ψ to be key word set compactness mea-
sure that combines compactnesses over resonant cylinder sizes with respect to the
skips of the ELSs and over ELSs of the key word set. Combination methods over
ELS sets include taking the minimum, the harmonic mean, µh, and the geometric
mean, µg and simply summing.

Ψmin(W ;ψ, δ, φ, σ) = min{ψ(ζ; δ, φ) : ζ ∈ Z(W ;T, σ)}
Ψharm(W ;ψ, δ, φ, σ) = µh{ψ(ζ; δ, φ) : ζ ∈ Z(W ;T, σ)}
Ψgeom(W ;ψ, δ, φ, σ) = µg{ψ(ζ; δ, φ) : ζ ∈ Z(W ;T, σ)}

where v is a weight function whose value is the fraction of the text that the ELSs
of ζ have minimal absolute skip.

12 Event Key Word Sets
For the p − value to be meaningful, the key word sets must be specified a priori
before any kind of experiment is done and without peeking at the data. A signif-
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icant part of the Torah code controversy is about the a priori specification of the
key word sets, one side claiming that successful experiments have been done with
demonstrably a priori key word sets and the other side claiming not. To obtain
key word sets that are demonstrably a priori, experts and previously published
lists of key words have been employed. To make the a priori demonstrably strong
Hebrew spellings should be used that are determined in some objective way such
as by rule rather than by subjective preference.2 However, a priori is not the only
condition that is required. The key word sets must be historically correct,3 and
in some sense complete. Complete means, for example, if the class of events is
American Presidents, then there must be a collection of key word sets for each
American president. No American president should be missing.

The specification of a key word set may seem simple but it is not. Let us sup-
pose for the moment that an event has been encoded. The encoding involves a
set of key words. But the experimenter does not know the key words. So the ex-
perimenter guesses a key word set. If the experimenter guesses wrong, then even
though the event is encoded, the p-value of the experiment may not be not signif-
icant. Thus it is not unusual for the experimenter to make some small number of
guesses, each guess being one key word set.

In this case, the experiment must be set up as a test of the Null hypothesis
against multiple alternatives hypotheses. Each alternative hypothesis is specified
by some key word subset of the given total set of key words. For a single event,
the formal test of the Null hypothesis is against the alternative hypothesis that one
or perhaps more than one of the key word sets have a more compact meeting than
expected by chance. For multiple events, the formal test of the Null hypothesis can
be against the alternative hypothesis that nearly all the events have one or more
of their key word sets having a more compact meeting than expected by chance.
Or as in WRR the alternative hypothesis is that the key word sets, taken over all
events and over all alternative key word sets of the same event, tend to have more
compact meetings than expected by chance.

2Hebrew has alternative ways of spelling due to the degree to which additional letters are used
in the spelling to designate vowels.

3It has been documented from the Aumann committee experiment[1] where experts were em-
ployed that many dozens of errors were made. Errors of course invalidate an experiment.
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13 Monkey Text Population
In order to evaluate whether an effect is occurring in the Torah text different from
what would happen by chance in an ordinary text, it is required that a population
of ordinary texts be defined. We call such a population of ordinary texts Monkey
Texts to emphasize that in the Monkey Text population, the Null hypothesis of No
Torah Code Effect is applicable. For the Torah text to be special with regard to
Torah codes, it must mean that the strength of an encoding is significantly higher
(the ELSs of logically/historically related key words are in a more compact ar-
rangement) in the Torah text than in the texts of the Monkey text population. The
way to determine significantly higher is to compare. For any given key word set,
there is a test statistic called the compactness score v1 that is computed for the
Torah text. Then N − 1 texts from the Monkey text population can be randomly
sampled. Associated with the randomly sampled text n is a compactness score
vn for the same key word set. The significance s of the effect in the Torah text is
measured by computing the number of the N total texts having smaller compact-
ness value plus one half the number of the total texts having equal compactness
score, normalized by N the total number of texts examined.

s =
#{n | vn < v1}+ .5#{n | vn = v1}

N

Here s is the normalized rank of the Torah text’s compactness score.
There are a variety of different kinds of Monkey text populations that can

be defined that in some significant way bear some statistical similarity to the
Torah text. Each is created by taking the Torah text or its ELSs and perform-
ing some kind of randomly shuffling, making whatever compactness relationships
that might occur in these texts due to pure chance. In the American Presidents
experiment, we use the ELS random placement text population.

13.1 ELS Random Placement Text Population
The ELS random placement text population is always with respect to a given text
and its set E of ELSs of the given set of key words and skip specification. A
text of the ELS random placement text population does not consist of a text as a
long string of letters. Rather, each text of the population is represented as a set of
ELSs where each ELS keeps the same skip, length, and characters as it had in the
original ELS set E . However the beginning (and therefore the ending) positions
of each ELS are randomly translated. Each translation that keeps the span of the
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ELS entirely within the text length has the same probability of occurring. This
translation happens independently for each ELS. So if there were N ELSs and
ELS n had Xn possible translations, then the number of texts in the ELS random
placement text population would in effect be

N∏
n=1

Xn

If E(u, T ;σ) is the set of ELSs of word u from text T according to skip spec-
ification σ, we write E(u, T ;σ, π) to designate an ELS random placement pertur-
bation of E(u, T ;σ) according to perturbation π.

All the other letter or word shuffling schemes produce Monkey texts in which
the number of ELSs for each key word will differ from that in the Torah text. The
ELS random placement text population is the only random perturbation scheme
that produces exactly the same number of ELSs and at exactly the same skips as
produced by the Torah text. This is important.

Suppose that for a given key word set, the Torah text has some statistical ad-
vantage over texts in say a letter permuted text population because the Torah text
has substantially more low rank skip ELSs of some of the key words than ex-
pected by chance. In this case an experiment might succeed mainly due to such an
ELS distribution in the Torah text, rather than because of the relationship between
ELSs of the key words. The ELS random placement text population can be said to
be a conservative one because in this case, each ELS random placement text has
the identical statistical advantage as the Torah text, and therefore, no text has any
advantage.

14 Hypothesis Testing
The formal way in which the significance of an encoding is evaluated is by a test
of Hypotheses. The Null hypothesis of No Torah Code Effect is tested against an
alternative hypothesis that there is an encoding. The alternative hypothesis may
be a complex of alternatives[3].

The statistical computation involved in the test of hypotheses amounts to defin-
ing a test statistic measuring the strength of the encoding and determining the
fraction of monkey texts that have at least as good an encoding as the Torah text.
The normalized rank of the test statistic is called the p-value of the experiment.
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To do the test of hypothesis, the p-value of the experiment is compared to a
significance level α0. If the p-value is smaller than α0, then the Null hypothesis
of No Torah Code effect is rejected in favor of the alternative that the key word
set has ELSs in an unusually compact arrangement. If the p-value is larger than
the significance level, the Null hypothesis is not rejected. It is usual for the p-
value of an experiment to be reported and the rejection or non-rejection of the
Null hypothesis to be done by the reader based on his/her selected significance
level.

14.1 Test of Null Hypothesis Against A Complex Alternative
Hypothesis

An experiment about a particular historical event is described by a set of what
are considered to be the key words relevant to that event. However, not all of the
key words thought about might have corresponding ELSs in a relatively compact
arrangement. Hence an hypothesis test of the Null hypothesis against the Alterna-
tive hypothesis that all of the key words have ELSs that are in a relatively compact
arrangement will most likely not be rejected, even when there is an encoding of
most of the key words in the set.

Therefore, the experiment must be set up as a test of the Null hypothesis
against multiple alternatives hypotheses. Each alternative hypothesis is specified
by some subset of the given total set of key words. For a single event, our formal
test of the Null hypothesis is against the alternative hypothesis that one or two of
the alternative hypotheses is true.

For example, in the American president experiment, an event is an American
president’s name paired with the Hebrew key word i`sp, meaning president. How-
ever, the spelling of the president’s name in Hebrew is not known. There are four
reasonable spellings for president Lincoln in Hebrew: olewpil, olwpil, olewpl, olwpl,
depending on which of two vowels are explicitly represented in the spelling. Thus
for the basic Lincoln event there are four alternative hypothesis represented by the
four key word sets: {olewpil,i`sp}, {olwpil,i`sp}, {olewpl,i`sp}, {olwpl,i`sp}.

14.2 Bonferroni
When K separate experiments are done, each testing the Null hypothesis against
a different Alternative hypothesis, yielding p-values p1, . . . , pK , the smallest p-
value is not the p-value of the complex of the K separate experiments. Indeed,
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if the experiments are separate, then the exact p-value of the complex of K sep-
arate experiments cannot be determined if they are not in fact independent. This
is the usual case. However, it can be bounded. The Bonferroni upper bound is
Kmin{p1, . . . , pK}. The p-value of the K separate experiments must be smaller
than the Bonferroni bound. Therefore, if the Bonferroni bound, which is nec-
essarily higher than the p-value of the complex of experiments, is smaller than
the significance level, then it necessarily follows that the p-value of the complex
of experiments is also smaller than the significance level. In this case the Null
hypothesis can be rejected at the given signficance level.

The problem with the Bonferonni bound is that it is an upper bound and in
many instances is much higher than the true p-value of the complex of K separate
experiments. This is particularly true when the K Alternative hypothesis are sta-
tistically dependent. Using Bonferroni in this situation will make it more likely
that the Null hypothesis will not be rejected when it ought to be rejected; that
is a true effect will be misdetected. This leads us to examine more statistically
efficient ways of doing the hypothesis testing.

14.3 Combining Over Key Word Sets
Suppose there are K key word sets, each describing the same historical event. In
this case it is expected that every pair of key word sets will have a substantial
fraction of its key words in common to both sets. Hence the alternative hypothe-
ses will necessarily have statistical dependence and the Bonferroni bound will be
much too high.

There is a statistically economical alternative to using the Bonferroni bound
when testing the Null hypothesis against a complex of K Alternative hypotheses
in a combined experiment where the trial by trial results are available. The alter-
native is to use K scoring schemes, one appropriate for each of the K Alternative
hypotheses, and then combine the scores together in a suitable way. For the sake
of simplicity, the discussion which follows assumes that all scores are with respect
to one given compactness measure.

After the first trial, which involves the Torah text, each remaining trial of anN
trial experiment randomly samples a monkey text from the monkey text popula-
tion. In accordance with a specified protocol, on trial n, the compactness feature of
the ELSs from each of theK key word sets is computed, resulting in c1n, . . . , cKn.
For the kth key word set, the N compactness values ck1, . . . , ckN are rank normal-
ized to rk1, . . . , rkN .

The p-value associated with test of the Null hypothesis against the Alternative
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that the kth key word set has its ELSs in a more compact relationship than expected
by chance is given by rk1. The Bonferroni boundB on the test of the Null hypoth-
esis against the K alternative hypotheses is then B = Kmin{r11, . . . , rK1}.

The K scores and combine method would define a combining function F act-
ing on the rank normalized values r1n, . . . , rKn, for the nth trial of the exper-
iment. In this situation, combining functions ought to be symmetric in its ar-
guments. For example, one combining function could be the minimum: fn =
F (r1n, . . . , rKn) = min{r1n, . . . , rKn}. The scores f1, . . . , fN are rank normal-
ized and the rank normalized value, p1, associated with f1 is the p-value of the
experiment. For the min combining function, p1 is necessarily smaller than the
Bonferonni bound B.

However, the min combining function is not necessarily the statistically most
optimal. For example, a combining function may be motivated by a probabil-
ity derivation that has even some unwarranted conditional independence assump-
tions.4 One such combining function derived in appendix A is

F1(r1n, . . . , rKn; θ) =
1

K

K∑
k=1

p(rkn; θ)

= f1n (1)

where p(r; θ) is the probability under the Alternative hypothesis of observing a
normalized relative rank of r in an N trial experiment and 1/K is the prior prob-
ability of any one of the K alternative hypotheses of being true. We base p(r; θ)
on − log because for small relative ranks − log will be large (log(2N)) for an N
trial experiment where the smallest and unique relative rank is 1/2N . For larger
relative ranks, − log will be small and indeed be 0 for a relative rank of 1. We
define

p(r; θ) =

{
−β(θ) log(r) when r < θ
0 otherwise (2)

This combining function arises (up to a fixed constant of proportionality) when
exactly one of the K alternative hypothesis is assumed to be true, and for each
trial n, and for each k, the random variables r1n, . . . , rKn are conditionally in-
dependent given that Alternative Hypothesis k is true. When the Null hypothesis

4The unwarranted assumptions are not used in making any probability calculations for the p-
value. The probability derived by using the unwarranted assumptions gives a motivation and a
formula for performing a calculation of a score function. It is the score function that is used in a
proper Monte Carlo experiment for determining the p-values.
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holds for the remainingK−1 possibilities, they are assumed to follow the discrete
uniform on the normalized relative ranks of an N trial experiment. The threshold
θ specifies that the probability of observing a normalized rank greater than θ un-
der the alternative hypothesis is 0. We call this method the first order combining
method.

If two of the K alternative hypotheses are assumed to be true, with the prior
probability for any pair to be true to be 2/(K(K − 1)), then under the same
conditions as the previous derivation, the combining function should be

F2(r1n, . . . , rKn; θ) =
2

K(K − 1)

∑
{(j,k)|k>j}

p(rjn; θ)p(rkn; θ)

= f2n (3)

We call this method the second order combining method.
If it is assumed that when there is an encoding either one or two of the K

alternative hypotheses is true, and the prior probability for exactly one alternative
being encoded is q and the prior probabiity for exactly two alternatives being
encoded is 1− q then under the same conditions as the first probability derivation,
the score sn of the nth trial should be

sn = qf1n/N + (1− q)f2n (4)

We call this method the non-rank normalized method of combining.
Another possible way of combining F1 with F2 would be to take the N values

f11, . . . , f1N and rank normalize them forming theN normalized ranks t11, . . . , t1N .
Also rank normalize the N values f21, . . . , f2N forming the N normalized ranks
t21, . . . , t2N . Define the rank normalized score sn for the nth trial by the convex
combination

sn = qt1n + (1− q)t2n (5)

In either combining method, the p-value of the experiment is the normalized
relative rank of the score for the first trial.
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14.4 Composite Experiments
Composite experiments are associated with multiple events. Suppose that there
are M events. Each event has associated with it a collection of key word sets.
The mth such collection is associated with a test of the Null hypothesis against
the Km alternative hypotheses formed by each one of the Km key word sets in the
collection. In the composite experiment, we are interested in a test of hypotheses
at two levels. We wish to test the Null hypothesis against the Alternative that more
of the M events have their ELSs in a more compact arrangement than expected
by chance.

Hence, we treat each event as an experiment that produces in each trial a score
which is the normalized relative rank of the compactness associated with the trial.
Thus each trial produces M scores. These scores then combined together in a
test statistic appropriate for a test of the Null hypothesis against M Alternative
hypotheses, where all or nearly all of the M Alternative hypotheses are assumed
to be true. Here we take “all or nearly all” to mean all, or all but one, or all but
two, or all but three. Appendix A.3 gives the derivation for the computation of the
associated test statistic.

15 Our Compactness Features
For any key word set W , our compactness measure is composed of three basic
compactness components. In the definitions that follow recall that σ is the skip
specification, φ is the resonance specification.

• h1 = Ψmin(W ;ψmin, D2, φ∞, σ)
φ∞ is that resonance specification that specifies that the only cylinder size
any skip resonates to is the cylinder of infinite number of columns and on
that cylinder any skip resonates. The cylinder of infinite number of columns
essentially treats the text as a long linear string of symbols. On that cylinder
the distance measure D2 is the largest span length of any pair of ELSs in
the ELS set. ψmin indicates that over all resonant cylinder sizes for an ELS
set, we take the cylinder size having the smallest distance. As there is only
one cylinder size under consideration here, ψmin is the identity function.
Ψmin indicates that over all ELS sets of the key word set, we take the set
associated with the smallest span length.

• h2 = Ψharm(W ;ψmin,Ω2, φ, σ)
Ω2 is the largest distance between a pair of ELSs in an ELS set where the
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distance itself is defined as the square of the largest Euclidean distance be-
tween the letters of the ELSs on the cylinder plus the squared Euclidean
distance between successive letters of the first ELS on the cylinder plus the
squared Euclidean distance between successive letters of the second ELS on
the cylinder. ψmin indicates that of the different distances, each associated
with a different resonant cylinder size, we take that distance corresponding
to the best cylinder size. The best cylinder size is the one for which this
distance is smallest. Ψharm indicates that over all the ELS sets of the given
key word set, each ELS set having a best cylinder distance, we take the
harmonic mean.

• h3 = Ψharm(W ;ψmin, R12, φ, σ)
R12 is the largest distance between a pair of ELSs in an ELS set where
the distance itself is defined as the square of the largest Euclidean distance
between the letters of the ELSs on the cylinder plus the smallest Euclidean
distance between the letters of the ELSs on the cylinder all times the sum
of the the squared Euclidean distance between successive letters of the first
ELS on the cylinder and the squared Euclidean distance between successive
letters of the second ELS on the cylinder. ψmin indicates that of the different
distances, each associated with a different resonant cylinder size, we take
that distance corresponding to the best cylinder size. The best cylinder size
is the one for which this distance is smallest. Ψharm indicates that over all
the ELS sets of the given key word set, each ELS set having a best cylinder
distance, we take the harmonic mean.

The key word set compactness measure h1 is the 1D compactness measure. It’s
value is the length of the smallest length text segment that contains at least one
ELS of each of the key words. This measure is the first measure we experimented
with over ten years ago. Although there are substantial number of key word sets
describing events that this measure detects with associated small p-values, there
are many key word sets believed to be encoded that this measure does not detect.

Examining cases where it works and those where it does not work, we realized
that when the compactness of a short word (say 4 characters or less) is measured
with a longer word (say 6 characters or more) what happens is that the skips of the
ELSs of the longer word will tend to be much larger than the skips of the ELSs
of the shorter word. Hence the span of the ELSs of the longer word will tend
to be much larger than the span of the ELSs of the shorter word. That increases
the probability that regardless where the random placement puts the ELSs of the
longer word, there will most likely be some random placement of the shorter

20



word ELS that is nearly contained within the span of the longer word ELS. This
translates to a p-value for the 1D compactness measure alone that will be around
0.5, making it essentially useless as a measure under these conditions.

The key word set compactness measure h2 is a variation motivated by the
Omega measure of WRR. Here the distance used is the sum of the closest and
furthest distance between pairs of letters of the two ELSs. Instead of adding to
that squared distance the squared distance between sucessive letters of each ELS
on the cylinder as done in the Omega measure and h3, we multiply the sum of
the closest and furthest squared distance between pairs of letters of the two ELSs
with the sum of the squared distance between successive letters of each ELS on
the cylinder. Both the h2 measure and the h3 compactness measure were reported
on orally at the International Torah Code conference in Jerusalem in 2000 and
2001.

The key word set compactness measure h3 is very much in the spirit of the
Omega measure of WRR[7]. However, in the Omega measure of WRR, the dis-
tance used is the closest distance between pairs of letters of the two ELSs. In
h3, the distance used is the maximum distance between pairs of letters of the two
ELSs.

16 Our Experimental Protocol
For our skip specification σ, we set the largest skip permitted for ELSs of a given
key word to be such that the expected number of ELSs searching from a minimum
skip of 2 would be 10. And we set the minimum skip for ELSs to be 1.

For our resonance specification φ, we require that at least one ELS from each
key word in a key word set be resonant on a cylinder size and on the resonant
cylinder size the skip of the ELS must be no more than 10 rows and no more than
10 columns. This differs from WRR who only insisted that the row skip on the
cylinder be no more than 10 rows.

For our monkey text population we use the ELS random placement population
with 100,000 trials. The Monte Carlo is carried out with an independent execu-
tion for each event. The random number seed was obtained from the digits of π.
Starting from the first digit after the decimal point, the digits were broken up into
strings of seven long. Each successive string of seven π digits was used as the
random number seed for each successive event Monte Carlo.

We test the Null hypothesis against the complex of alternatives that nearly all
the events are encoded and that for each encoded event, one or two key word sets
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are encoded by either compactness measure h3 or by both compactness measures
h1 and h2.

We use both first order (1) and second order (3) methods of combining over
the key word sets of each event. We set our threshold θ = .2 in (2), a value used
by WRR[7] in a slightly different context, but in the same spirit as we used it.

We use the nearly all combining method to combine over all the events as
described in Appendix A.3. We do this for each trial. The prior probability for
each of the four cases: all, all but one, all but two and all but three are identical
and equal to .25. We define the probabilty P2 by

P2(r) =
er

1− r

17 The American Presidents
In this section we report on an experiment pairing the names of the American
presidents with the key word `isp, meaning president. There are 42 people who
have served as presidents, some multiple times. To perform the experiment, we
must transliterate their names into Hebrew. Due to the various ways non-Hebraic
names can be spelled in Hebrew, we devised a rule base system to provide a rea-
sonable set of Hebrew spellings for each president’s name (see Appendix B. In
addition we use two variations: the last name alone and the first character of the
president’s first name as a prefix to the spelling of the last name. Presidents with a
middle initial we also provided an additional alternative with the first and middle
initial as a prefix to the last name (see Appendix C. The total number of spellings
was 314, on the average nearly seven and a half spellings per name. The number
of spellings having at least one ELS was 261.

The spellings generated by the rules include nearly all the spellings used in
Hebrew encyclopedic sources. Those spellings not generated by the rules are
spellings that are closer to Yiddish spellings rather than Hebrew spellings.

The rules are simple, without exceptions, and complete. The rules map the
English consonants to the Hebrew consonsants based on the phonetic sound. They
map the long and short English vowels to the Hebrew letters `,e i, and din a manner
consistent with the way Hebrew represents vowels by letters in the system call
mater lectionis or simply the full spellings. For each possible vowel that can be
represented in the system of mater lectionis, the rules produce a spelling with and
without the mater lectionis letter.
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There is an issue of what to do with double consonants like the double r in
Harrison, whose syllables parse as har-ri-son. The typical Hebrew spelling will
map the double r to a single x. However, since we do not have the pre-knowledge
that an encoding must do it that way, we also allowed for a double English conso-
nant to map to a double Hebrew consonant. Although it is rare for Hebrew names
or words to have a double consonant with a single phonetic sound it does occur.
An example name is the Israelite tribe Issachar which in Hebrew is spelled xk$$i,
with a double s. Two example words with double x are Ep��q!, meaning we have
been disobedient and Ep��v!, meaning we have been hostile.

The American president experiment tests the Null hypothesis of No Torah
Code Effect against the complex alternative hypothesis that

1. in accordance with the Hebrew to English translation rules of appendix B

2. and in accordance with the skip specification, and the resonance specifica-
tion stated in section 16

3. for nearly all the presidents

4. each president has one or two Hebrew spellings of his name

5. that have ELSs which are in a more compact arrangement with ELSs of the
Hebrew word i`$p, meaning president

6. in the 5 books of the Chumash

7. by compactness measure h1, h2 or h3

The compactness measure h3 produced the smallest p-value. In a 100,000 trial
Monte Carlo experiment taking nearly three weeks on a dedicated PC, the h3 p-
value .5/100, 000. Of the 42 presidents, 36 of them had some spelling paired with
`i$p so that on one of the compactness measures the rank normalized value was
less than .10. 73 of the 261 key word pairs has a rank normalized value on the
h3 measure of less than .10. The probability that under the Null hypothesis 73 or
more out of 261 key word sets would have a rank normalized value less than .10
is 2.88× 10−16. From this we conclude that main result is not due to either a few
presidents or a few key word sets. The result is something characteristic to the
entire set of presidents and their key word sets.5

5By the entire set of presidents and their key word sets we do not mean each and every president
and each and every key word set. Only way more presidents and way more key word sets than
expected by chance.
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18 Concluding Discussion
We have discussed an experimental protocol by which an experiment can be done
that tests the Null hypothesis of No Torah Code Effect against a composite alterna-
tive. We used the protocol on the American Presidents. The composite alternative
hypothesis is that more of the events have one or two key word sets that have
their ELSs in a more compact arrangement by either compactness measure h3 or
simultaneously by compactness measure h1 and h2 than expected by chance.

For this purpose we developed a score function based on a probability deriva-
tion of what the probability would be if one or if one or two of a fixed number of
choices follows a given probability function while the remaining follow a discrete
uniform probability function. And by a similar derivation what the probability
would be if nearly all (all, all but one, all but two) follow a given given probability
function while the remaining follow a discrete uniform probability function.

The protocol employing the score function is direct, statistically motivated,
self normalizing, consistent with the nature of the alternative hypothesis, and (in
our opinion) aesthetically simple. No part of the protocol has large numbers of
variables or parameters whose values can be set to memorize the pattern of the
ELS data from the Torah text versus that from the monkey texts. The parameters
of the protocol itself were three: maximum skip set so that the expected number of
ELSs was about 10; the maximum row and column skip of an ELS on a cylinder
was 10. The probability threshold was .2. The rest of the freedom in the protocol
came from methodological choices: the monkey text population, the compactness
measures, the various rank normalizations, the combining method over key word
sets of an event, the combining method over scores of events.

For various reasons, that we did not discuss due to space limitations, our
methodology is more conservative than that employed by WRR[7] and less prone
to the kind of wiggling done by McKay to make an experiment apparently suc-
cessful. The best of the three experiments produced a p-value of .5/100,000. So
by BonFerroni, the p-value of the combined experiment is bounded above by
1.5/100,000. It is clear that the Null hypothesis of No Torah Code Effect has
to be rejected.

For our future work, we will be applying this protocol to new event data sets
with a larger number of trials.
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Appendix

A One Or Two Of
A sample x1, . . . , xK is taken. Each observed value either is sampled from popula-
tion 1 or population 2. The probability of any observed value is the same constant
in population 1; i.e. population 1 values are distributed as a discrete uniform.
The probability of any observed value v from population 2 is given by probability
function P2.

It is known a priori that either only one or two of the sampled values come
from population 2. And the prior probability is equal to 2/(K(K + 1)) for any
one of the K(K + 1)/2 possibilities that either one or two observed values are
sampled from population 2.

Let Φ denote the set of K(K + 1) mutually exclusive possibilities.

Φ = {φ ⊂ {1, . . . , K} | #φ ≤ 2}

Φ can be written as Φ1 ∪ Φ2 where

Φ1 = {φ ⊂ {1, . . . , K} | #φ = 1}
Φ2 = {φ ⊂ {1, . . . , K} | #φ = 2}

Once the possibility specified by a φ ∈ Φ is given, the values are independently
sampled.

Let ∆ be the constant probability that a sampled value comes from population
1.

A.1 One Or Two
Now we can compute the probability of the observed sample x1, . . . , xK given
that the sampling comes from one of the possibilities of Φ.

P (x1, . . . , xK | Φ) =
P (x1, . . . , xK ,Φ)

P (Φ)

=
∑
φ∈Φ

P (x1, . . . , xK , φ)

1

25



=
∑
φ∈Φ

P (x1, . . . , xK | φ)P (φ)

=
∑
φ∈Φ

P (x1, . . . , xK | φ)
2

K(K + 1)

=
∑
φ∈Φ

∏
j∈φc

∆
∏
j∈φ

P2(xj)

=
2

K(K + 1)

 ∑
φ∈Φ1

∆K−1
∏
j∈φ

P2(xj) +
∑

φ∈Φ2

∆K−2
∏
j∈φ

P2(xj)


=

2∆K−2

K(K + 1)

 ∑
φ∈Φ1

∆
∏
j∈φ

P2(xj) +
∑

φ∈Φ2

∏
j∈φ

P2(xj)


=

2∆K−2

K(K + 1)


K∑

k=1

∆P2(xk) +
K∑

j=1

K∑
k=j+1

P2(xj)P2(xk)


A.2 One of
If it is known a priori that only one of the sampled values comes from population
2, then we can proceed in a similar manner.

P (x1, . . . , xK | Φ1) =
P (x1, . . . , xK ,Φ1)

P (Φ1)

=
∑

φ∈Φ1

P (x1, . . . , xK , φ)

1

=
∑

φ∈Φ1

P (x1, . . . , xK | φ)P (φ)

=
∑

φ∈Φ1

P (x1, . . . , xK | φ)
1

K

=
∑

φ∈Φ1

∏
j∈φc

∆
∏
j∈φ

P2(xj)

=
∆K−1

K

K∑
k=1

P2(xk)

When smaller values are more probable, and when x is known to lie in a range
that is greater than 0 and less than or equal to 1, then probability distributions that
monotonically decrease with increasing value include the harmonic distribution
P2(x) = α

x
and the geometric distribution P2(x) = −βlog(x)
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A.2.1 Testing the Null Hypothesis

Suppose that we are testing the Null Hypothesis that each x1 . . . , xk comes from
the discrete uniform distribution against the Alternative Hypothesis that one of
the observed values come from population 2 which is distributed by the harmonic
distribution. Then the likelihood ratio of the Null hypothesis to the Alternative
Hypothesis is given by

LR =
∆K

∆K−1

K

∑K
k=1 α/xk

=
∆

α

1
1
K

∑K
k=1

1
xk

=
∆

α
harmonic mean(x1, . . . , xK)

This motivates the use of the harmonic mean of x1, . . . , xK as the test statistic.
When the harmonic mean is sufficiently small, the Null hypothesis would be re-
jected.

Suppose that we are testing the Null Hypothesis that each x1 . . . , xk comes
from the discrete uniform distribution against the Alternative Hypothesis that one
of the observed values come from population 2 which is distributed by the geomet-
ric distribution. Then the likelihood ratio of the Null hypothesis to the Alternative
Hypothesis is given by

LR =
∆K

∆K−1

K

∑K
k=1 −β log(xk)

= −∆

β

1
1
K

∑K
k=1 log(xk)

= −∆

β

1
1
K

log(
∏K

k=1 xk)

= −∆

β

1

log
(
(
∏K

k=1 xk)
1
K

)
= −∆

β

1

log (geometric mean(x1, . . . , xK))

This motivates the use of the geometric mean as the test statistic. When the ge-
ometric mean of x1, . . . , xK is sufficiently small, the Null hypothesis would be
rejected.
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A.3 All or Nearly All
A sample x1, . . . , xK is taken. Each observed value either is sampled from popula-
tion 1 or population 2. The probability of any observed value is the same constant
in population 1; i.e. population 1 values are distributed as a discrete uniform.
The probability of any observed value v from population 2 is given by probability
function P2.

It is known a priori that all, all but one, all but two or all but three of the
sampled values come from population 2. And the prior probability for the all case
be q0, the prior probability for the all but one case be q1, the prior probability for
the all but two case be q2, and the prior probability for the all but three case be q3.
For the all but one, the prior probability for each of theK cases is 1/K. For the all
but two, the prior probability for each of the K(K − 1)/2 cases is 2/(K(K − 1).
For the all but three, the prior probability for each of the K(K − 1)(K − 2)/6
cases is 6/(K(K − 1)(K − 2)).

Let Q0 be the probability of the observed values given the all case. Let Q1

be the probability of the observed values given the all but one case. Let Q2 be
the probability of the observed values given the all but two case. Let Q3 be the
probability of the observed values given the all but three case. Let there be N
trials. Assuming conditional independence, we can write,

Q0 =
K∏

k=1

P2(xk)

Q1 =
1

N

1

K

K∑
k=1

K∏
i=1

i6=k

P2(xk)

=
1

N

1

K

K∏
k=1

P2(xk)
K∑

i=1

1

P2(xi)

Q2 =
1

N2

2

K(K − 1)

K∑
j=1

K∑
k=j+1

K∏
i=1

i6=j,k

P2(xi)

=
1

N2

2

K(K − 1)

K∏
i=1

P2(xi)
K∑

j=1

K∑
k=j+1

1

P2(xj)P2(xk)

Q3 =
1

N3

6

K(K − 1)(K − 2)

K∑
i=1

K∑
j=i+1

K∑
k=j+1

K∏
m=1

m6=i,j,k

P2(xm)
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B a P t
C (see) v Q w
C, ck (kay) w R x
D c S (ess) q
F t S (zee) q, f
G b Sh s
H d T h
J b Th, Ta z
K w V (next to long vowel) a
Kn p V (next to short vowel) e
L l W e
M n X qw
N p Z f

Table of transliteration of English consonants into Hebrew consonants

=
1

N3

6

K(K − 1)(K − 2)

K∏
m=1

P2(xm)
K∑

i=1

K∑
j=i+1

K∑
k=j+1

1

P2(xi)P2(xj)P2(xk)

Hence the probability Q of observing the values x1, . . . , xK given the nearly all
and the conditional independence assumption is

Q(x1, . . . , xK) =
3∑

i=0

qiQi(x1, . . . , xK)

B Transliteration of English Names Into Hebrew
In this appendix we give the principles by which English names can be transliter-
ated into Hebrew in all the possible forms. The consonants are simple to translit-
erate. The table above shows the letter to letter correspondence.

The next table gives the possible transliteration for the vowel sounds of En-
glish. The vowels are the place where there is some variability in the sense of
putting the vowels in completely or incompletely or some vowels present and
some vowels not present. The only exception to this is the long I vowel which
has no way in Hebrew of being shown by nikud. Therefore, whenever the English
word has a long I sound, either a double ii must be used or a single i. The logic
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English Vowel Long Vowel Hebrew Short Vowel Hebrew
Cake ` cat -

A Hayes, Taylor ii Buchanan `
Reagen ii Adams, Arthur `

Taft, Grant, Carter `
E seek, bead i set, Jefferson -

field, Pierce i
bike ii, i` Fillmore, Harrison i

I Tyler Madison, Wilson
Clinton, Nixon

boat, rose e Wilson, Clinton e
O Polk, Roosevelt
U Truman, Hoover e pup, Roosevelt e

Table of transliterations of English vowels into Hebrew

behind this is that the double ii is the modern Hebrew convention to show the
long I sound. The single i is also possible because the English long I vowel is a
dipthong. It is really a composition of and Ah sound with and ee sound. The Ah
sound can be designated by a patach nikud on the previous consonant and the i
designates the ee sound.

30



C Transliterations of American President Names

No. President’s Name Last Name Last Name with Initials
1 George Washington pehbpise pehbpise b

pehbpse pehbpse b
phbpise phbpise b
phbpse phbpse b

2 John Adams qnc` qnc` b
3 Thomas Jefferson oeqxtb oeqxtb z

oqxtb oqxtb z
oeqxttb oeqxttb z
oeqxttb oeqxttb z

4 James Madison oeqicn oeqicn b
oqicn oqicn b
oeqcn oeqcn b
oqcn oqcn b

5 James Monroe expen expen b
expn expn b

6 John Quincy Adams qnc` qnc` w b
qnc` b

7 Andrew Jackson oeqwb oeqwb `
oqwb oqwb `

8 Martin Van Buren oxeia oe oxeia oe n
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No. President’s Name Last Name Last Name with Initials
9 William H. Harrison oeqixd oeqixd d e

oeqixd e
oqixd oqixd d e

oqixd e
oeqxd oeqxd d e

oeqxd e
oqxd oqxd d e

oqxd e
oeqixxd oeqixxd d e

oeqixxd e
oqixxd oqixxd d e

oqixxd e
oeqxxd oeqxxd d e

oeqxxd e
oqxxd oqxxd d e

oqxxd e
10 John Tyler xliih xliih b

xlih xlih b
11 James Knox Polk wlet wlet p b

wlet b
wlt wlt p b

wlt b
12 Zachary Taylor xeliih xeliih f

xliih xliih f
xelh xelh f
xlh xlh f

13 Millard Fillmore xenlit xenlit n
xnlit xnlit n
xenlt xenlt n
xnlt xnlt n

xenllit xenllit n
xnllit xnllit n
xenllt xenllt n
xnllt xnllt n
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No. President’s Name Last Name Last Name with Initials
14 Franklin Pierce qxit qxit t

qxt qxt t
15 James Buchanan op`weia op`weia b

opweia opweia b
16 Abraham Lincoln olewpil olewpil `

olewpl olewpl `
olwpil olwpil `
olwpl olwpl `

17 Andrew Johnson oeqpeb oeqpeb `
oeqpb oeqpb `
oqpeb oqpeb `
oqpb oqpb `

18 Ulysses S. Grant hp`xb hp`xb q i
hp`xb hp`xb i
hpxb hpxb q i
hpxb hpxb i

19 Rutherford B. Hayes fiid fiid a x
fiid x
fd a x
fd a x

f`d f`d a x
f`d x

20 James A. Garfield clitxb clitxb ` b
clitxb b

cltxb cltxb ` b
cltxb b

21 Chester A. Arthur xezx` xezx` ` v
xezx` v

xzx` xzx` ` v
xzx` v

22 Grover Cleveland cplailw cplailw b
cplalw cplalw b
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No. President’s Name Last Name Last Name with Initials
23 Benjamin Harrison oeqixd oeqixd a

oqixd oqixd a
oeqxd oeqxd a
oqxd oqxd a

oeqixxd oeqixxd a
oqixxd oqixxd a
oeqxxd oeqxxd a
oqxxd oqxxd a

24 William McKinley ilpiwn ilpiwn e
ilpwn ilpwn e

25 Theodore Roosevelt hleefex hleefex z
hleefx hleefx z
hlefex hlefex z
hlefx hlefx z

26 William H. Taft ht`z ht`z d e
ht`z e

htz htz d e
htz e

27 Woodrow Wilson oeqlie oeqlie e
oeqle oeqle e
oqlie oqlie e
oqle oqle e

28 Warren G. Harding bpicxd bpicxd b e
bpicxd e

bpcxd bpcxd b e
bpcxd e

29 Calvin Coolidge bcilew bcilew w
bcilw bcilw w
bclew bclew w
bclw bclw w

30 Herbert C. Hoover xaed xaed v d
xaed d

xad xad v d
xad d
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No. President’s Name Last Name Last Name with Initials
31 Franklin D. Roosevelt hleefex hleefex c t

hleefex t
hleefx hleefx t

hleefx c t
hlefex hlefex t

hlefex c t
hlefx hlefx c t

hlefx t
32 Harry S. Truman onexh onexh q d

onexh d
onxh onxh q d

onxh d
33 Dwight D. Eisenhower xeedpfii` xeedpfii` c c

xeedpfii` c
xedpfii` xedpfii` c c

xedpfii` c
xeedpfi` xeedpfi` c c

xeedpfi` c
xedpfi` xedpfi` c

xedpfi` c c
xeedpfii xeedpfii c c

xeedpfii c
xedpfii xedpfii c c

xedpfii c
34 John F. Kennedy icpw icpw t b

icpw b
icppw icppw t b

icppw t b
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No. President’s Name Last Name Last Name with Initials
35 Lyndon B. Johnson oeqpeb oeqpeb a l

oeqpeb l
oeqpb oeqpb a l

oeqpb l
oqpeb oqpeb a l

oqpeb l
oqpb oqpb a l

oqpb l
36 Richard M. Nixon oeqwip oeqwip n x

oeqwip x
oeqwp oeqwp n x

oeqwp x
oqwip oqwip n x

oqwip x
oqwp oqwp n x

oqwp x
37 Gerald R. Ford cxet cxet xb

cxet b
cxt cxt xb

cxt b
38 James Earl Carter xhx`w xhx`w ` b

xhx`w b
xhxw xhxw ` b

xhxw ` b
39 Ronald W. Reagan obiix obiix e x

obiix x
ob`x ob`x e x

ob`x x
obx obx e x

obx x
40 George H. W. Bush sea sead b

sea b
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No. President’s Name Last Name Last Name with Initials
41 William J. Clinton oehpilw oehpilw e

oehplw oehplw e
ohpilw ohpilw e
ohplw ohplw e

42 George W. Bush sea sea e b
sea b
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